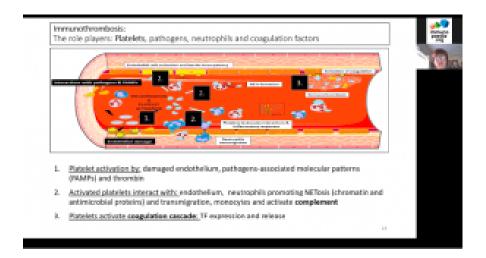

SAIS/Immunopaedia Webinar: Immunothrombosis & COVID-19

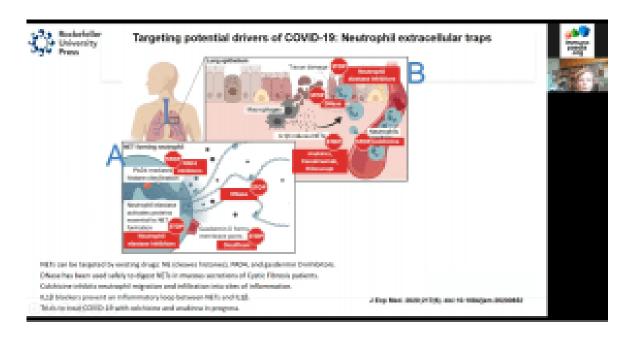

This week we highlight SAIS/Immunopaedia COVID-19 Webinar featuring talks by haematopathologists Dr Susan Louw and A/Prof Jessica Olpie on immunothrombosis & COVID-19. Immunothrombosis is the direct interaction of activated leukocytes with platelets and coagulation function, this interaction usually involves dysregulation of neutrophil extracellular trap formation.

Dr Susan Louw began her talk titled "Immunothrombosis: lessons from other conditions" with a brief background on Thrombosis and how physiological process if left unchecked can lead to pathology. She

discussed how cross-talk between the immune system (macrophages, complement proteins, neutrophils) and coagulation cascade (platelets and tissue factors) can cause

to immunothrombosis. She then gave an indepth yet brief overview of how coagulation proteins engage with the complement cascade (see image below) and the role of innate cells

(macrophages and neutrophils) and cytokines in immunothrombosis. Further, she then highlighted that platelets, well known for their role in blood-clotting, have immunomodulatory properties. Dr Louw concluded her talk describing clinical conditions associated with immunothrombosis (see below).


Clinical condition	Conquistion dysfunction	Complement dysfunction
Sepsis	Potent activator of coagulation via tissue factor with endothelial dysfunction	Activation of multiple complement polinways
Trauma indiaced coagulopathy	Potent activator of coagulation, hyperfiltrinolysis and DIC	Increased CSa and C6d on surface of platelets
Systemic lupus erythematosus (SUII)	Complement promotes plassist activation and thrundools; APLAs activate samplement and coagulation cascade	Complement activation by nuclear autoantibodies; Deficiencies and matchines in other classical partnersy proteins; Reduced expression of complement inhibitors
Antiphospholipid Syndrome	Cise spregulation TF on neutrophilis which then activates cougulation with inflammation, trophoblest injury and feetal death.	APLAs ectivate complement on traphablests leading to C3a generation
Auto- and alloimmune haemolytic anaemia	Complement-modisted RBC lysis causes activation of coagulation sie - Exposure of groupstidylerine - Release of tissue factor beening microparticles - Endothelial cell injury - Alberted vacodynamics - Release of reactive coague species	Activation of the classical complement pathway by light entitledly bound against never beind CI: Extravelous Feemington of Cib-covind entheropies, Activation of complement by circulating three beam.

Parexportal meeturnal haamoglobinuria	Congulation dystunction	Complement dysfunction
	Platete activation: Absence of OP1 linked a Na receptor with Impatinal Birthredgels; Endestherlad dystunction from five hazmoglobin and site ceicle depletion; MAC and COs generation promote thrombook; Elf-premote thrombia generation and inhibit ACAMTSI3	Complement receivand hacmodysis by unregulated production of IMAS on cell surfaces; CSa upregulates 1.6, 1.8, TMP a
Atypical haemelytic uraemic syndrame	Distothelial cell demage and disruption of microseculature with thrombeals; Plassists are activated by IAAC or CSa Unappased complement-mediated destruction of planeless (flue to lack of Factor III and other membrane regulators)	Dynegulation of alternate CF and CS convertiace activity due to loss of inhibitory complement
Hereditary angloedema	Unregulated activation of pre-attitive in- kultikesin-HMWK bradekinis due to C1-MH deficiency or dysfunction	Deliciency/dysfunction of C1-inhibitor results in loss of neutralizing C1s, Cir and MASPs that dysregulating CP and LP

Jessica Opie's talk focused on "Thrombosis in COVID-19". A/Prof Opie gave an overview of homeostatic properties [coagulation factors (clot

formation), coagulation inhibitors (clot controlling) and fibrinolysis (clot-dissolving)] associated with blood vessel injury. She then provided evidence which demonstrated that severe COVID-19 pathology is associated with dysregulation of tissue repair and blood vessel formation of the lung endothelial membrane. She also discussed how cytokine storm and dysregulation of the complement pathway contributes to excessive NETosis and is associated with severe COVID-19 pathologies (such as hypercoagulability, endotheliopathy, macrothromboisis and microthromobisis). She ended her talk describing how targeting either NETosis (using NET inhibitors) and the complement cascade could be potential therapies for severe COVID-19.

Summary by Cheleka Mpande